One IEEE 802.11 WAP can typically communicate with 30 client systems located within a radius of 100 m. However, the actual range of communication can vary significantly, depending on such variables as indoor or outdoor placement, height above ground, nearby obstructions, other electronic devices that might actively interfere with the signal by broadcasting on the same frequency, type of antenna, the current weather, operating radio frequency, and the power output of devices. Network designers can extend the range of WAPs through the use of repeaters and reflectors, which can bounce or amplify radio signals that ordinarily would go un-received. In experimental conditions, wireless networking has operated over distances of several kilometers.
Most jurisdictions have only a limited number of frequencies legally available for use by wireless networks. Usually, adjacent WAPs will use different frequencies to communicate with their clients in order to avoid interference between the two nearby systems. But wireless devices can "listen" for data traffic on other frequencies, and can rapidly switch from one frequency to another to achieve better reception on a different WAP. However, the limited number of frequencies becomes problematic in crowded downtown areas with tall buildings housing multiple WAPs, when overlap causes interference.
Wireless networking lags behind wired networking in terms of increasing bandwidth and throughput. While (as of 2004) typical wireless devices for the consumer market can reach speeds of 11 Mbit/s (megabits per second) (IEEE 802.11b) or 54 Mbit/s (IEEE 802.11a, IEEE 802.11g), wired hardware of similar cost reaches 1000 Mbit/s (Gigabit Ethernet). One impediment to increasing the speed of wireless communications comes from Wi-Fi's use of a shared communications medium, so a WAP is only able to use somewhat less than half the actual over-the-air rate for data throughput. Thus a typical 54 MBit/s wireless connection actually carries TCP/IP data at 20 to 25 Mbit/s. Users of legacy wired networks expect the faster speeds, and people using wireless connections keenly want to see the wireless networks catch up.
As of 2006 a new standard for wireless, 802.11n is awaiting final certification from IEEE. This new standard operates at speeds up to 540 Mbit/s and at longer distances (~50 m) than 802.11g. Use of legacy wired networks (especially in consumer applications) is expected to decline sharply as the common 100 Mbit/s speed is surpassed and users no longer need to worry about running wires to attain high bandwidth.
Interference can commonly cause problems with wireless networking reception, as many devices operate using the 2.4 GHz ISM band. A nearby wireless phone or anything with greater transmission power within close proximity can markedly reduce the perceived signal strength of a wireless access point. Microwave ovens are also known to interfere with wireless networks.
Wednesday, January 2, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment